
SRI AKILANDESWARI WOMEN’S COLLEGE, WANDIWASH

DATA STRUCTURE AND ALGORITHM

Class : I UG Computer Science

Mrs. R.PADMASHREE

Assistant Professor Department of Computer Science

SWAMY ABEDHANADHA EDUCATIONAL TRUST, WANDIWASH

ABSTRACT DATA TYPE

• Data abstraction, or abstract data types, is a programming
methodology where one defines not only the data structure
to be used, but the processes to manipulate the structure

• like process abstraction, ADTs can be supported
directly by programming languages

• To support it, there needs to be mechanisms for
• defining data structures

• encapsulation of data structures and their routines to manipulate the
structures into one unit

• by placing all definitions in one unit, it can be
compiled at one time

ADT DESIGN ISSUES

• Encapsulation: it must be possible to define a unit that
contains a data structure and the subprograms that
access (manipulate) it

• design issues:

• will ADT access be restricted through pointers?

• can ADTs be parameterized (size and/or type of
data being stored)?

• Information hiding: controlling access to the data
structure through some form of interface so that it
cannot be directly manipulated by external code

ADT DESIGN ISSUES

• often implemented via two sections of code

• public part (interface) constitutes those elements
that can be accessed externally (often limited to
subprograms and constants)

• private part, which remains secure because it is
only accessible by subprograms of the ADT itself

STACK

• A stack is an Abstract Data Type (ADT), commonly

used in most programming languages. It is named

stack as it behaves like a real-world stack, for example

– a deck of cards or a pile of plates, etc.

STACK REPRESENTATION

• Can be implemented by means of Array, Structure,

Pointers and Linked List.

• Stack can either be a fixed size or dynamic.

STACK

push

create

pop

isfull

isempty

STACK: Last-In-First-Out (LIFO)

• void push (stack *s, int element);

/* Insert an element in the stack */

• int pop (stack *s);

/* Remove and return the top
element */

• void create (stack *s);

/* Create a new stack */

• int isempty (stack *s);

/* Check if stack is empty */

• int isfull (stack *s);

/* Check if stack is full */

STACK USING ARRAY

top

top

PUSH

PUSH USING STACK

top

top

POP

POP USING STACK

STACK USING LINKED LIST

• In the array implementation, we would:

• Declare an array of fixed size (which determines the maximum
size of the stack).

• Keep a variable which always points to the “top” of the stack.

• Contains the array index of the “top” element.

• In the linked list implementation, we would:

• Maintain the stack as a linked list.

• A pointer variable top points to the start of the list.

• The first element of the linked list is considered as the stack top.

DECLARATION

#define MAXSIZE 100

struct lifo
{
 int st[MAXSIZE];
 int top;
};
typedef struct lifo
 stack;
stack s;

struct lifo
{
 int value;
 struct lifo *next;
};
typedef struct lifo
 stack;

stack *top;

ARRAY LINKED LIST

STACK CREATION

void create (stack *s)
{

s->top = -1;

/* s->top points to
last element
pushed in;
initially -1 */

}

void create (stack **top)
{

*top = NULL;

/* top points to NULL,
indicating empty
stack */

}

ARRAY LINKED LIST

PUSHING AN ELEMENT INTO STACK

void push (stack *s, int

element)

 {

 if (s->top == (MAXSIZE-1))

 {

 printf (“\n Stack

overflow”);

 exit(-1);

 }

 else

 {

 s->top++;

 s->st[s->top] =

element;

 }

 }

ARRAY

void push (stack **top, int element)

{

 stack *new;

 new = (stack *)malloc

(sizeof(stack));

 if (new == NULL)

 {

 printf (“\n Stack is full”);

 exit(-1);

 }

 new->value = element;

 new->next = *top;

 *top = new;

}

LINKED LIST

POPPING AN ELEMENT FROM STACK

int pop (stack *s)

 {

 if (s->top == -1)

 {

 printf (“\n Stack

underflow”);

 exit(-1);

 }

 else

 {

 return (s->st[s->top--]);

 }

 }

ARRAY

int pop (stack **top)

{

 int t;

 stack *p;

 if (*top == NULL)

 {

 printf (“\n Stack is empty”);

 exit(-1);

 }

 else

 {

 t = (*top)->value;

 p = *top;

 *top = (*top)->next;

 free (p);

 return t;

 }

}

LINKED LIST

BASIC IDEA

•Queue is an abstract data structure, somewhat similar to

Stacks. Unlike stacks, a queue is open at both its ends.

One end is always used to insert data (enqueue) and the

other is used to remove data (dequeue).

QUEUE: First-In-First-Out (LIFO)

void enqueue (queue *q, int element);

 /* Insert an element in the queue */

 int dequeue (queue *q);

 /* Remove an element from the
queue */

 queue *create();

 /* Create a new queue */

 int isempty (queue *q);

 /* Check if queue is empty */

 int size (queue *q);

 /* Return the no. of elements in
queue */

